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Relaxation dynamics of a viscous silica melt: The intermediate scattering functions
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We use molecular dynamics computer simulations to study the relaxation dynamics of a viscous melt of
silica. The coherent and incoherent intermediate scattering functdiast) and F¢(q,t), show a crossover
from a nearly exponential decay at high temperatures to a two-step relaxation at low temperatures. Close to the
critical temperature of mode-coupling thediCT) the correlators obey in the regime the time temperature
superposition principléTTSP and show a weak stretching. We determine the wave-vector dependence of the
stretching parameter and find that f6¢q,t) it shows oscillations that are in phase with the static structure
factor. The temperature dependence of dheelaxation timesr shows a crossover from an Arrhenius law at
low temperatures to a weak&rdependence at intermediate and high temperatures. At the latter temperatures
the T dependence is described well by the power law proposed by MCT with the same critical temperature that
has previously been found for the diffusion constBnand the viscosity. We find that the exponenof the
power law forr are significantly larger than the one fbr The wave-vector dependence of theelaxation
times forF(q,t) oscillates around(q) for F¢(q,t) and is in phase with the structure factor. Due to the strong
vibrational component of the dynamics at short times the TTSP is not valid iB4f&axation regime. We
show, however, that in this time window the shape of the curves is independent of the correlator and is given
by a functional form proposed by MCT. We find that the value of the von Schweidler exponent and the value
of y for finite g are compatible with the expression proposed by MCT. Finally we discussdbpendence of
the critical amplitude and the correction term and find that they are qualitatively similar to the ones for simple
liquids and the prediction of MCT. We conclude that, in the temperature regime where the relaxation times are
mesoscopic, many aspects of the dynamics of this strong glass former can be rationalized very well by MCT.
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I. INTRODUCTION emphasized that some of these tests concerned not only the
predictions of the theory on gualitativelevel, but also on a
If a glass forming liquid is cooled from high to low tem- quantitativeone, and that also the outcome of these tests
peratures one finds that its relaxation timeor its viscosity =~ were often in very good agreement with the theoretical pre-
7, increases rapidly by many decadé$ If »(T) is plotted diction. Thus one can say that the theory is able to describe
in an Arrhenius plot, i.e., logf) vs 1/T, one finds that the in the vicinity of T, the dynamics of fragile liquids on a
shape of the curves is not universal but depends on the mgualitative as well as a quantitative level.
terial. For two extreme cases of the shape, Angell has coined Things are much less clear for the casesobng glass
the terms “strong” and “fragile” glass formerf2]. Strong formers since by definition they do not show a crossover
glass formers are liquids whose(T) curve shows an bDetween two temperature dependences;(i), or only a
Arrhenius law in the whole accessible temperature range. IN€TY Mild one. Hence it is priori not clear at all whether
contrast to this, fragile liquids show a pronounced crossovel€S€ types of systems have a crossover temperatuaad
at intermediate temperatures from an Arrhenius-like law af’€nce whether there is a temperature regime in which MCT
high temperatures to an Arrhenius-like law at low temperacan b.e.used to dgscnbe their dynamics. It was therefore a bit
tures with ahigher activation energy. It is one of the merits SUTPrising when it was found that glycerol, a glass former
of the so-called mode-coupling theof¥ICT) of the glass that is a rather strong glass forming liquid, shc_st a dynamics
transition[3,4] to offer an explanation for the existence of that can be described well by means of this thefB)p|.
this crossover in terms of nonlinear dynamical feedback efVery recently a computer simulation study of liquid $jO
fects and to make detailed predictions for the dynamics ofh® paradigm of a strong glass former, showed that the dy-
the glass forming liquids close to this crossover temperatur82mics of this system at high temperatures shows features
T., the critical temperature of MCT. In the past years therelhat are very reminiscent of the dynamics of fragile systems
have been a large number of attempts to check the validity otfound theirT¢ [7]. In particular it was shown that also in
these predictions and the result of these efforts was that th#lica a critical temperaturé. can be identified, with a value
theory is indeed able to give a surprisingly good descriptiorf/oundT=3330 K, i.e., a temperature that is presently out-

of the dynamics in this temperature rangd. It has to be Side the reach of experimental investigations. It is of interest
to note, however, that for this material an extrapolation of

experimental data to higher temperatures gives evidence that
* Author to whom correspondence should be addressed. Permaround 3220 K a bend in the viscosity would indeed be ob-

nent address: Laboratoire des Verres, Univerientpellier 1,  served[8], thus supporting the results from the simulation.
34095 Montpellier, France. Email address: kob@Idv.univ-Very recently it has also been demonstrated that MCT can be
montp2.fr used to understand the dynamics of liquid silica not only on
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a qualitative level, but also on a quantitative one. For ex-  Il. MODEL AND DETAILS OF THE SIMULATION
ample, it was shown that the theory is able to predict with

good accuracy quantities like the wa\(e—vec_tor dependence ?Itle interaction of silica and give some of the details of the
the Debye-Waller factof9]. The only input in that calcula- i 1ation. Further information on the latter can be found in
tion were static quantities, i.e., the partial structure factorgzef [14].

and static three-point correlation functions, which were de- |, order to obtain a realistic description of the structural

termined directly from simulations. Also for water, another 3nq dynamical properties of a given material by means of
network forming liquid, it was found that MCT predicts the classical simulations, it is necessary to have a potential at
wave-vector dependence of the Debye-Waller factor with ayand that describes the interactions between the different
very good accuracy10]. Thus these studies give evidence jons realistically. Due to the importance of silica in applied
that MCT is also able to give a correct description of theas well as fundamental science it is nowadays possible to
dynamics of strong liquids in the temperature region wherdind a multitude of different potentials in the literature, most
the dynamics starts to slow down significantly, hence ex-of them having certain advantages and disadvantages. Vari-
panding the range of applicability of the theory considerably.ous simulations have shown that one of the most reliable of
From the point of view of the theory this possibility is these potentials is the one proposed by van Beest, Kramer,
perhaps not that surprising. When the theory was develope@and van SantefBKS) that was obtained by determining the
originally, some terms in the equations of motion wereenergy surface of a SiBi, tetrahedron by means ab initio
dropped in order to simplify the equations and because it wagalculations, parametrizing this surface with a simple ana-
argued that they are not very relevant to understand the matfitical expression and subsequently doing some lattice dy-
predictions of the theory11]. This “ideal version” of the ~namics calculations with it to improve the fit parameters
theory has subsequently been tested extensively in experE15]' , o
ments and computer simulatiof&4]. A bit later it was rec- The functional form of the BKS potential is
ognhized, however, that close to the critical temperafliye
the terms that were dropped will change some of the predic- & (r):qaqﬁe
tions of the theory considerablj12,13, since they are h r
needed to describe processes, today called “hopping pro-
cesses,” that become relevant at low temperatures. If these a,Be[Si,0], (1)
hopping processes are very small, the predicted temperature
dependence of the relaxation times shows a strong bend in atherer is the distance between the ions of typeand S.
Arrhenius plot, reminiscent of the one seen in fragile glassThe values of the constards,, gz, A,g, B,g, andC,gz can
formers[13]. If these processes are very pronounced thide found in Ref[15]. For the sake of computational effi-
temperature dependence shows only a weak bending arouwincy the short range part of the potential was truncated and
T., thus a similar behavior as the one found in strong glasshifted at 5.5 A. This truncation has also the benefit of im-
formers. Thus it seems thatpriori the theory is indeed able proving the agreement between the density of the amorphous
to describe also strong glass formers. glass at low temperatures as determined from the simulation
However, it is presently not clear whether the extendegVith the experimental value. Previous simulations have
form of the theory, i.e., the version of the theory that tries toShown that this potential is able to reproduce a variety of
include hopping effects, is really reliable also beyond a pheProperties of real amorphous silica, such as the density
nomenological description. Therefore it is important to check&nomaly, the static structure factor, the specific heat, the vis-

to what extent the theoretical predictions survive in the cas&OSY: and the thermal conductivipi]. Thus it can be

where one deals with a real material or a realistic micro_expected that it is also sufficiently accurate to give a reliable

. ) . . description of the time dependence of the intermediate scat-
scopic model in which hopping effects are expected to be . . L .
; . L . . . ering function, the central quantity discussed in the present
important. Such investigations might also give an idea ho

. . . paper.
the theory can be improved or extended in order to describ El)'he system investigated has 8016 ions in a cubic box with

the dypamics of realisti'c gl'ass forming liquids. Th? Presentived sizel = 48.37 A. This size is sufficiently large to avoid
paper is hence a contribution to this issue. For this we USgq finjte size effects found in the dynamics of such systems
molecular dynamics computer simulations to investigate th(f17,1a_ The equations of motion have been integrated by
dynamics of liquid silica in great detail. In particular we will means of the velocity form of the Verlet algorithm, using a
study to what extent the behavior predicted by the theory cafime step of 1.6 fs. The Coulombic part of the potential has
be found in this dynamics, i.e., we test in a stringent way tcheen evaluated by means of the Ewald sum using a constant
what extent MCT is able to give a reliable description of theq =12.82. Before the microcanonical production runs were
relaxation dynamics of strong glass formers at high temperastarted the system was equilibrated by coupling it to a sto-
tures. chastic heat bath. The duration of this equilibration was sig-
The rest of the paper is organized as follows. In the nexnificantly longer than the typical relaxation times of the sys-
section we give the details on the model we use and théem. Therefore we are sure that all the results presented
simulations. Section Il is devoted to the presentation of thévelow reflect the relaxation dynamids equilibrium, i.e.,
results, which are summarized and discussed in Section I\Vthat they are not affected by aging phenomena. The tempera-

In this section we present the model we used to describe
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tures investigated were 6100, 5200, 4700, 4300, 4000, 3760,
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3580, 3400, 3250, 3100, 3000, 2900, and 2750 K. In order to =0 oxygen
) ’ ’ S ’ ’ ’ ) =y q=1.7A"
improve the statistics of the results we averaged at each tem- 0.8 - L
perature over two independent runs. - =~ -~ T=2750K
Note that all these temperatures axgovethe melting 0.6 - \ L
temperature of real silica, which is around 2000 9], a
temperature that the BKS potential is able to reproduce rea- 0.4 1 L
sonably well[20]. Thus none of our simulations probe the SRR Y
dynamics of the system in its supercooled state. Nevertheless 0.2+ T=6100K\ \ A\ vt
we will see below that even at these relatively high tempera- N ) A .
tures the dynamics of the system is very slow. Thus this 0.0 oy o Y e
shows that in order to have a slow relaxation dynamics it is 10° 10 10" 10 10 1Ot[p1s(])

not necessary to be in a supercooled state.
FIG. 1. Time dependence of the incoherent intermediate scatter-

ing function for the oxygen atoms for all temperatures investigated.

The wave vector is 1.7 A%, the location of the first peak in the

In this section we will present the results. In the first partstructure factor. The dashed line is a fit to the curve for 6100 K with
we will discuss the relaxation dynamics of the system at longan exponential functioisee text for details

times, i.e., thea-relaxation regime. In the second part we
will focus on intermediate times, i.e., th@-relaxation re-
gime, and compare these results with the predictions
MCT. box
The quantity of main interest that will be studied in the

! ! ; . Ir.1 Fig. 1 we show the time dependencerafq,t) for the
presgnt paper is the intermediate scattering funclﬁ()q,t) oxygen atoms for all temperatures investigated. The wave
and its self-partF¢(q,t) [21]. These two space-time corre-

. . ] o vector isq=1.7 A%, the location of the first sharp diffrac-
Iatlon_ functlons_ can be defmed_ most easily in terms of the[ion peak in the structure factor, i.e., the length scale that
density fluctuations for the particles of tyje corresponds to the typical distance between two adjacent tet-
N, rahedra in the networK7]. (We mention that for other wave
Spa(Q,t)= E exdig-r;(t)], (2)  vectors the curves look _qualitatively very similafrom this
j=1 graph we see that at high temperatures the curves show at
very short times a crossover from a ballistic regime to a
whereq is the wave vector. The intermediate scattering funcrejaxation behavior that is basically exponential and that the
tion is then defined as correlation function decays to zero within 1 ps, i.e., very
rapidly. To illustrate this exponential decay we have in-
cluded in Fig. 1 an exponential functionf(t)
=0.75 exp{-1/0.25 ps)(dashed ling which essentially coin-
cides with the simulation curve d@=6100 K fort>0.1 ps.
Here (-) stands for the thermal average and we have asyye emphasize that due to the complex vibrational dynamics
sumed that the system is isotropic and hfﬁﬁé‘é(q,t) de-  of the system at short timé48], one has to use an amplitude
pends only on the modulug=|q|. From F**(q,t) a self-  gjgnificantly smaller than 1.0.For intermediate and low
part Fg can be extracted that corresponds to the diagongbmperatures one observes two additional regimes: Immedi-
elements in the double sum Bf*, ately after the ballistic regime, which last just up46.02
1 N ps, the motion of the ions shows a vibrational character, as
@ _ = : _ can be inferred from the presence of a dip in the correlator at
Fs(@,0= N, 121 (explig-[rj(t)—r;(0)]}). ) around 0.2 ps. This type of dynamics is the dominant one for
temperatures below the glass transition, but from the figure
Note thatF(q,t) andF¢(q,t) are the space-Fourier trans- we recognize that it can be seen even at temperatures as high
forms of the van Hove correlation function and its self-part,as 3580 K. From a microscopic point of view this dynamics
respectively[21], thus quantities that are often studied in corresponds to the rattling motion of the ions in the cage
computer simulations of liquids. However, since in scatteringformed by their surrounding neighbors and the network.
experiments the latter functions are not directly accessible, ifNote that this cage is not rigid at all, since the particles that
contrast toF¢(q,t) andF(q,t), and since also from a theo- form the “walls” of this cage move themselves als@\l-
retical point of view the scattering functions are more inter-though every liquid will show some sort of vibrational dy-
esting than the van Hove functions, it is appropriate to denamics, the one for SiOis special in that it has also impor-
termine also them in simulations. We emphasize that tdant contributions at quite low frequenciés—2 TH2 the
obtain the results of the present work we have not used therigin of which has in recent years been the matter of a
connection between the van Hove functions and the intermestrong debat¢18,22. For times that are somewhat longer
diate scattering functions, but calculated the latter functionshan the ones for the vibrations, i.€=0.2 ps, this type of
directly from their definitions given in Eq$3) and(4). For  motion is damped out and the patrticles slowly start to leave

Ill. RESULTS

}his we averaged over aj vectors that had the same modu-
Ofus and that were compatible with the size of the simulation

1
Faﬁ(qit):m<5pa(q!t)5p2(qio)> (3)

=z
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the present tem is around 333 In fact, if the curve
1.0 - —w‘\\':\"&\vfﬁ:\:rﬁ N oxygen r pres Sys IS u 0. : urves

= RN . \;\\\:1: \\ N g=1 7A for the different temperatures are inspected carefully one
Z SOV, \ finds that the ones in the temperature range 4708TK
1 0.8 17=2750K\ s \‘T =6100K - 3400 K (short dashed lines in Fig) 2lo indeed fall onto a
0.5 N master curve whereas the ones for high=6100 K) and
0.6 - gM, i low (T=<3000 K) temperatures decay faster. Hence the curve
E”O'ai atT=2750 K(bold line in Fig. 3 is already very close to the
0.4 - ’ - exponentially decaying one at=6100 K (long dashed line
0.21 in Fig. 2). Hence we see that slightly aboVe the correla-
021 o1 L tion functions do indeed obey the TTSP, whereas it is vio-
lated if the temperature is too far beldw. This behavior is

0

in qualitative agreement with the theory, since it is predicted
10" 10° 10 that far above and far beloW, the relaxation is of Debye
174 type[3,13].

We also mention that according to MCT the TTSP is sup-
posed to hold also in thg-relaxation regime, i.e., in the time
}Q/mdow in which the correlation functions are close to the

plateau. From the graph we see, however, that in this time
regime the curves do not collapse at all. The reason for this is

the mentioned cage. This dynamics, in the following calledlikely the fact that in this system the microscopic dynamics,
the B8 procesy3,4], is thus the beginning of the process, I-€., the above-mentioned low-frequency vibrations, are so
i.e., the time regime in which the ions leave the cage compronounced that they completely obscure the TTSP in this
pletely and lead to the structural relaxation of the system. Iiime window[23], in contrast to simple liquids whose vibra-
the correlation functions it is seen as a plateau at intermediional dynamics does not have strong contributions at very
ate times, the length of which rapidly increases with decreadow frequencies, i.e., around 1-2 THz. Below we will see,
ing temperature thus pushing therelaxation to large times however, that certain predictions of MCT concerning the dy-
(see Fig. L MCT makes detailed predictions on the dynam-namics in theg-relaxation regime are still valid, despite the
ics of the system on the time scale of {Beelaxation and in  presence of the strong vibrational dynamics.
the following we will check the validity of these in detail. The results presented so far concerned the incoherent part
From Fig. 1 one gets the impression that the shape of thef the intermediate scattering function of the oxygen atoms.
curvesin the a-relaxation regimedoes not depend on tem- For the case of the silicon atoms the time and temperature
perature, i.e., that the correlators obey the so-called timdependence is qualitatively similar, although for this species
temperature superposition princiglETSP). This means that the TTSP at long times is fulfilled a bit bettgt4]. Since

2

0.0 —
10°10° 10 10° 10

FIG. 2. Incoherent intermediate scattering function for oxygen
vst/7(T), wherer is the a-relaxation time at temperatufie Inset:
Enlargement of the curves at long rescaled time. See text for th
meaning of the different line styles.

a correlatore(t,T) can be expressed by Fs(q,t) measures essentially the dynamics of a tagged par-
R ticle within its cage and how it escapes this cage at long
d(t, T)=pt/7(T)), (5 times, not much can be learned from this correlation function

on the relative motion of the particles. Therefore it is of
where 7(T) is the typical time scale for the decay of the jnterest to study also the coherent intermediate scattering
correlation function, i.e., ther-relaxation time, andp is a  function F(q,t) that is defined in Eq(3). In Fig. 3 we show
master function. MCT predlcts that there exists a so-callednhe time dependence of the three parfet?(q,t) for all
critical temperaturd,. in the vicinity of which the TTSP is temperatures investigated. The wave vector is again 17 A
valid. Since this is one of the main predictions of the theoryi.e., the location of the first sharp diffraction peak. Although
it is of interest to check whether or not it is valid for the from a qualitative point of view these correlation functions
present system. For this we have defined carelaxation are similar to the incoherent ones, a closer inspection does
time 7 by requiring that at timer the correlator has decayed show interesting differences. For example, the coherent
to e ! of its initial value. If the TTSP holds, a plot of the curves show the effects of the complex vibrational dynamics
correlators at different temperatures versis(T) should of the system much more pronounced in that, e.g., several
give a master curve. In Fig. 2 we show this type of plot andmaxima and minima can be seen between 0.02 ps and 1 ps,
we recognize that apparently the scaling does not work verwhereas the incoherent curves show only one local minimum
satisfactorily. To show this we have plotted in the inset of(see Fig. L We also mention that the modulus of the inco-
the figure an enlargement of the main figure at long rescaletierent functions as well &' andF°° are always smaller
times. From this inset we recognize that the fact that theéhan 1.0 since they aréormalized autocorrelation func-
TTSP is not fulfilled is not due to the noise in the data buttions. This is in contrast t&S° which, being not an auto-
rather due to a systematic trend in the curves. We have alsmorrelation function, can become larger than 1.0. A closer
made sure that this violation of the TTSP is not due to thenspection of the curves for this correlator does indeed show
way we have defined-, since a different definition gave that for times around 0.03 ps the curves are larger than 1.0,
qualitatively the same resuli&4]. Recall, however, that the which is the reason why this correlator is very flat at short
TTSP is predicted to hold only slightly aboVe, which for  times.
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FIG. 3. Time dependence of the coherent intermediate scattering
function for all temperatures investigated. The wave vector is 1.7 0.2 \ i
A1, the location of the first peak in the structure faci@. Si-Si, \\\
(b) Si-O, (c) O-0. i
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From Fig. 3 one sees that in therelaxation regime the VWV
shape of the curves depends only weakly on temperature
i.e., that the TTSP is valid. That this is essentially the case i
d_emonstrated in Fig. 4, where we plot the coherent corr_elat-emperaltures investigateda) y!(q,») vs frequency ». (b)
tion functions for the case of O-O versus the rescaled t'm‘?(”(q D)X Vi) VS Pl s, WheTew s is the location of they
t/7. We see that within the noise of the data the curves baﬁ;ak’ in)(”s. e ma max
sically collapse onto one master curve. However, also in this °
case small systematic deviations from the TTSP, as dis- . . ) )
cussed for the incoherent functions, can be found upon clos&@rrelation experiments. However, in neutron or dynamic
inspection of the curves. Thus this shows that also for theskght scattering experiments only the time-Fourier transforms
types of correlation functions the TTSP holds only for tem-0f these correlation functions are accessible. Therefore it is
peratures relatively close fb;. of interest to calculate these functions also, in order to see to
The intermediate scattering functions discussed so far cafhat extent the various regimes seen in the time domain can
be directly measured in spin echo experiments or photoRe found in the frequency domain. Since the intermediate
scattering functions have been measured over more than
seven decades in time, the calculation of their Fourier trans-
form is not a trivial matter. In order to do this we have
approximated each curve with a spline under tension and
calculated the Fourier transform of the spline by means of
the Filon formula[24]. Thus we obtained the dynamic scat-
L tering functionsS(q,w) and Sy(q,v). Since in the experi-
ments one often measures the imaginary part of the suscep-
tibility, x”(q,w), we have multiplied these functions with
o/T to obtainy”(q,w) and xz(q,w), respectively.
In Fig. 5@ we showys as a function ofv=27w for all
temperatures investigated. We see that at 610¢ Kshows
; only a single broad peak. The width of this peak at half
y maximum is approximately 1.5 decades, which shows that it
10 is not Debye-like, since this would correspond to a width of
1.14 decades. This increase is simply due to the fact that the
FIG. 4. Coherent intermediate scattering function for thebroad peak af =6100 K is a sum of a microscopic and a
oxygen-oxygen correlation Vi 7(T), where 7 is the a-relaxation  relaxation peak, where the relaxation peak should be of De-
time at temperaturd. Inset: Enlargement of the curves at long bye type in agreement with the exponential decay of the
rescaled time. See Fig. 2 for meaning of the dashed curves. corresponding curve fdf¢(q,t) in Fig. 1 fort>0.1 ps.

" FIG. 5. Frequency dependence of the imaginary part of the
ynamic susceptibility yz(q,v) for the oxygen atoms for all

10° 10 10° 102 10" 10°
t't
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If the temperature is lowered the single peak splits up into
two, i.e., into a microscopic peak at high frequencies and an
a peak at lower frequencies. With decreasing temperature
the amplitude of the microscopic peak decreases but its lo-
cation is independent of. In contrast to this ther peak
quickly moves to lower frequencies and also its height in-
creases slightly. However, the shape of the peak seems to be
essentially independent dt At low temperatures we find a
well-defined plateau between thepeak and the microscopic

B(a)

T e

peak. A plot of logf?) vs log() shows that at these low &—50-0 L

temperatures the whole spectrum can be described very well 0.7 |

by a sum of a peak at microscopic frequencies and aeak 1.0 2.0 3.0 qlA™ 4.0

with a high-frequency wing that scales like ¥, where the

exponenty is ~0.6 and independent df Thus this result is FIG. 6. Wave-vector dependence of the Kohlrausch-Williams-

in agreement with the von Schweidler law discussed belowVatts stretching parameter for the silicon and oxygen incoherent
in the context of Fig. 12 that gives an exponent 0.62. It isintermediate scattering functions and the silicon-silicon and
remarkable that this type of a plot shows that for temperaoxygen-oxygen coherent intermediate scattering functiofis.
tures around 3250 K, i.e., arounfl,, the susceptibility —=2750 K.
seemaiotto be just the sum of an peak and a microscopic
peak, but that near the minimum between the two peakton of MCT [27] that with increasingq the value of B
x=(v) is enhanced. This means that there is an additionaghould approach the value of the von Schweidler expobent
process in this frequency regime, tBeprocess of MCT. We discussed in more detail below, which for our system is
emphasize that this enhancement is only seen clo$g,tin ~ around 0.62, i.e., significantly smaller than 1.0. A4t
agreement with the prediction of the theory. =4 A~ the value forB(q) as determined fronf for sili-
That the shape of the-peak does indeed not depend oncon and oxygen is around 0.77, i.e., higher than the value
temperature, is demonstrated in Fighs Here we show predicted by the theory for large. However, it has to be
Xe(q,v) X0, Vmaw @S @ function ofv/ vyay, Where vy is r(_ealized th.aq=4 A~ cannot be pon3|dered yet as “large” _
the location of the maximum of the peak. From this plot ~Since at this wave vector the static structure.factor shows still
we clearly see that within the accuracy of our data the curvegignificant oscillationg7]. In a MCT calculation for a hard
for low temperatures fall on top of each other. Finally we SPhere system it has been found that only at very large wave
mention that qualitatively the same results have been ob¢ectors the value oB becomes close to the von Schweidler
tained for the case of the silicon atoms. exponent, i.e., af| at which the static structure factor is es-
Since the TTSP is valid to a high degree, we can detersentially 1.0[28]. In view of this result it is hence not sur-
mine the shape of the master curves as a function of therising that the value of oys at the largesg is still signifi-
observable. We have done this for the case of the coheref@ntly aboveb. . .
and incoherent intermediate scattering function for several The curves for the coherent functions oscillate around the
values ofq To determine this Shape we proceeded as folones for the incoherent ones. This oscillation is in phase with
lows: For each correlator¢(t) we determined an the partial static structure factor with peaks that correspond
a-relaxation timer’ at 2750 K by requiring thag(t)=0.1  to the maxima irS,,(q). Note that for largey the coherent

[25]. We then fittedg(t) with a Kohlrausch-Williams-Watts functions are approximated well by the corresponding inco-
function herent one$21] and thus it is expected that the valuesff

become identical also. However, in the rangeydbr which
p(t)=Aexd —(t/7)"], (6)  we can reliably determine the value gfthis is not yet the
case. This supports our argument given above that none of
where the amplitudéA and the stretching parametgrare  the8(q) curves has yet converged to its asymptotic value for
free fit parameters. This fit was done in the interval 0.02q—o. Note that qualitatively the same behavior 16(q)
<t/7'<2 that for typical values of3 corresponds to about has also recently been observed for water, where it was
90% of the height of ther relaxation(see Fig. 2 We made found thatB(q) converges to the von Schweidler exponkent
sure that choosing a different interval does not affect thefor large q and that it shows oscillation in phase with the
results significantly and we estimate the systematic error bagtatic structure for its coherent p4&9].
of B due to this choice being usually smaller than 0.03]. We now address the temperature dependence of the
In Fig. 6 we show the wave-vector dependencgdbr the  «-relaxation timer. Since SiQ is a strong glass formég]
two incoherent functions as well as for two coherent onesone expects that follows an Arrhenius law. In Ref.7] we
We see that for small and intermediajghe value of3 is  have shown, however, that for the diffusion constant as well
relatively large, in agreement with the observation thatas the viscosity this law is found only at relatively low tem-
strong glass-formers do not show much stretchi@g. peratures. For intermediate and high temperatures a signifi-
However, for the large values of 8 is significantly smaller cant deviation was found in that the temperature dependence
than 1.0 since the curves féi; decrease progressively with was weaker than the one expected from an Arrhenius law.
increasingg. This trend can be rationalized with the predic- That this is the case far' (T) as well is demonstrated in Fig.
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FIG'_ 7. Temperature dependence of melaxanon timer’ as  itical temperature from MCT as determined in Réf]. Also in-
determined fronF(q,t) for oxygen for various values af. The — ,4eq is the inverse of the diffusion constant as determined in Ref.

solid straight lines are fits to the data at low temperature with an7]. The solid straight lines are fits with power laws of the form
Arrhenius law with the activation energies given in the figure. Inset:given by Eq.(7). Inset: Value of the exponent. The point atq

; )
g%mp_erature depe}nderrllce of the prodDgr’, whereDo is the  — g rresponds to the exponent for the diffusion constant. The
lifusion constant for the oxygen atoms. horizontal dashed line is the value of as determined from the

. . dynamics in theB-relaxation regime.
7 where we show the-relaxation time forF¢(q,t) for the

oxygen atomgthe curves for the silicon atoms look qualita- ) o ) )
tively the samg The three curves that are shown correspond?ortional to 1. In order to check the validity of this predic-
to q values at the first sharp diffraction peatz=£1.7 A-1),  tion we have calculated the produdr and plot it in the
the location of the first minimum in the structure factgr ( inset of Fig. 7 as a function of T/for the three relaxation
=2.2A"1), and the location of the main peak 8(q) (q  times shown in the main figure. We see that although the
=2.8A"1). We see that, apart fromeadependent prefactor, Product is basically constant at high temperatures, it in-
the temperature dependence of the three relaxation times ggeases continuously at intermediate and low temperatures.
very similar in that we find at loW an Arrhenius law and at Since in this log-lin plot the curves at loW become a
intermediate and at high temperatures a crossover to $raight line we conclude that the activation energies for the
weaker temperature dependence. The activation energigéffusion constant and the relaxation times are not the same,
found at lowT are between 5 and 5.5 eV, which compares@ conclusion that is confirmed if one measures these energies
well with the experimental values for the diffusion constantdirectly (see below. Thus we conclude that the proportion-
and the viscosity4.7 eV and 5.33 eV, respectivelg0,31).  ality D=7~ * does not hold around, or lower temperatures.
Thus we conclude that also with regard to this quantity theOne reason fob# 7~ * might be the presence of dynamical
BKS model is quite reliable. heterogeneitieg32], i.e., that the cage that each particle sees
In Ref. [7] we showed that the deviations from the changes significantly from particle to particle which has the
Arrhenius law at intermediate and high temperatures are reeffect that also the time to escape this cage depends strongly
lated to a change of the transport mechanism of the ions iAn the particle. It is then easy to see that in this case the
that at lowT the atoms make independent hops whereas fofaverage diffusion constant is not inversely proportional to
high T the motion is much smoother and flow like. Such athe (average relaxation timg[33]. The observation thdD is
change in mechanism is predicted by MCT around the critin0t strictly proportional tor * has in the past already been
cal temperaturd [3,4], which for our system has been es- made in other systems for which the predictions of MCT
timated to be around 3330 [&]. The theory predicts that for hold extremely well not only on a qualitative but also on a
temperatures a bit above, the typical relaxation times in- quantitative level[34]. Thus, since the prediction of MCT

crease like a power law, thatD« 7! is only the result of a leading order calculation
of the theory, the fact that the produdtr is not completely
T(T)x(T—=T¢) "7, (7)  constant should not be taken as strong evidence that for the

present system the theory is not applicable.

with an exponenty that is universal for the system, i.e., is  Since for the present system the temperature dependence
independent of the observab{8i or O, value ofqg, etc). of the diffusion constant is not described so well by MCT,
Thus the bending of the curves in Fig. 7 can be rationalizedve investigate now th& dependence of the relaxation times
by the crossover from the power-law behavior given by Eqdirectly. In Ref.[7] we determined the value ofF; to be
(7) to an Arrhenius behavior at low temperatures. around 3330 K. Therefore we plot in Fig. 8 therelaxation

MCT predicts that the exponent is independent of the time as a function o — T, for those temperatures that are
observable and that the diffusion const@nshould be pro- higher thanT.. From this plot we see that the data at high
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00— = ey a-relaxation times in more detail. Since we have seen, see
1.0 2.0 3.0 4.0 Fig. 7, that in the whole temperature range investigated the
alA™] temperature dependenceois basically independent af it

o is sufficient to consider thg dependence at only one tem-
e b ot oo e 12U T f done n Fig. O where we showdfdepen-

. : i . . dence ofr’ for the two incoherent as well as the three co-
mediate scattering functiorsurves with symbols Also included herent functions(Note, that for the reasons discussed in the
are the partial structure factors from REf] (curves with no sym- . ' e
bols). context of Fig. 6, we shpw the dependence of mstegd of

the one ofr.) From the figure we see that the relaxation time

temperatures can indeed be described well with a power lafior the incoherent functions, pan@) and(c), decrease with
(bold straight liney in agreement with the prediction of the increasingg. For a diffusive process, and hence also for
theory[see Eq(7)]. The same conclusion holds for the dif- smallg, this decrease is given bydf/[21]. However, for the
fusion constant of the oxygen atoms, as can be seen from tieerange considered here, i.g=1.1 A%, one would expect
open circles in Fig. 8. Similar results have also been obtainethat the behavior of is affected by the local structure. That
for the relaxation time of¢(q,t) for silicon as well as the this indeed is the case is shown in Fig. 10 where we plot
various coherent intermediate scattering functiphg]. It 7'9? vs g. The product’ g2 can be interpreted as an inverse
should be noted, however, that this power law can be obg-dependent diffusion constant. Thus, generally speaking, for
served only in a temperature range in whielthanges by q values that correspond to length scales of nearest-neighbor
about 1 decade. This is significantly less than the range thatistancess'g? should be relatively large because then dif-
has been observed for simple liquif34—36, water[29],  fusion processes should be relatively slow due to the local
molecular glass former87,38, or polymeric systemg39].  order. As we see in Fig. 16/ g2 exhibits a maximum around
Thus we conclude that for this system the corrections to th@.7 A~* for silicon as well as for oxygen, which is close to
idealized version of the theory due to the hopping processethe position of the main peak in the static structure factor
make the observation of the power law rather difficult. corresponding to the length scale of a Si-O bond. It is of

As mentioned above, the value of the expongrghould  course remarkable that no such feature is found at the posi-
be independent of the observable. In the inset of Fig. 8 weion of the first sharp diffraction peak, af=1.7 A1, al-
plot the value ofy for the three different wave vectors as though such a feature is probably buried under the broad
well as the diffusion constar(point atq=0). We see that peak aroundyj=2.7A"! (see Fig. 1D We can rationalize
whereas the value of for intermediate values af is around  this g dependence from our previous observafidhthat the
2.4, the one for the diffusion constant is significantly smaller,elementary diffusion step for the oxygen atoms is due to the
y=2.05. Thus again we find that this quantity behaves somebreaking of a Si-O bondand a slightly more complicated
what anomalous with respect to the ones at lajgand the process for the silicon atornsvhich shows that this length
reason for this is likely the one discussed above. Also inscale is of particular importance for the dynamics. We note
cluded in the inset, horizontal dashed line, is the value of that a similar behavior is found also in the MCT calculation
as determined from a completely different approach, namelyfor a hard sphere systed0]. In this case one obtains a peak
the analysis of the3-relaxation regime(discussed below in 7g? at a position that is close to the first peak in the static
We see that this estimate ¢fis in very good agreement with  structure factor.
the values from thev-relaxation times, thus supporting the  In contrast to the monotonic decrease of the relaxation
prediction of the theory that the exponent is not just a fittime for the incoherent functions, the one for the coherent
parameter but a quantity with a fundamental theoreticafunctions shows an oscillatory behavior around the incoher-
meaning. ent one, see Fig. 9. These oscillations are in phase with the

We now discuss the wave-vector dependence of th@artial static structure factors, which have been included in
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is independent ofA if the timest, t', andt” are in the
B-relaxation regime, i.e., where E) holds. Note that this
prediction of the theory does not only hold for the idealized
L version of the theory but also for the extended one, i.e., if the
i hopping processes mentioned in the Introduction are taken
into account. Therefore it is reasonable to check the validity
of Eq. (8) not just aboveT ., but also below. This is done in
Fig. 11 where we plot the ratiB(t) for a temperature above
T., 4000 K in panela), and belowT ., 2750 K in panelb).
® The correlation functions shown aFe(q,T) for silicon and
T=2750K | oxygen atq=1.7, 2.2, 2.8, 4.43, 5.02, and 5.3TA The
0.0 C timest” andt’ are 0.4 ps and 1.6 ps f@r=4000 K and 11
I ps and 106 ps fol =2750 K, respectively.
5.0 ‘ - From Fig. 11a) we see that all the various curves collapse
3 nicely onto a master curve at intermediate times, i.e., in the
-10.0{ o5& L - B-relaxation regime. That this collapse is by no means trivial
AU A ™ 4 is seen at short and long times since there we find no col-
10 10 lapse at all, thus showing that in general the shape of the
t[ps] correlation function does depend on the observable. Only in
the B regime the correlators show a system universal time
dependence, in agreement with the theory.

The theory also predicts that with decreasing temperature
the time window over which thes relaxation is observed
should expand. That this is indeed the case is demonstrated
in Fig. 11(b), where we show the same correlation functions
large, the corresponding(q) is large also, a phenomenon as in panel(a), but now at a lower temperature. From the
that i,s very similar to the so-called de éennes narrowin figure we see that now t_he fange over WhICh the correla_ltors
[21]. [Note, however, that, strictly speaking, the de Genneq‘all or!to a master fun_ctlon has indeed mc_reased cpnsm!er-

CLeT ' ’ ! . %bly, in agreement with the theory. Also included in this
harrowing is a phenomenon related to the dynamicshatt panel is an enlargement B{t) at times where the correlator

tlmeds [21] andt;huts_ cannotl beflﬁed lto ei(-pla"::-&(? de- shows a dip, due to the boson peak mentioned above. From
pendence on the time scale of therelaxation] Finally we this inset we see that on this time scale the factorization

mention that th.|s type of dependence has also been found Hoperty no longer holds since there the correlation functions
aMcT calculation fpr a hard §phere systERs] and re(.:e'ntly are dominated by the vibrational dynamics for which ).
in a neutron scattering experiment of toluene amtbluidine iIS not valid

[41]. Th's shows that our f!ndmgs can _also_be S€en In réal - \ye have considered here only the incoherent intermediate

experiments and that MCT is able to rationalize them at leasécattering functions. But recently we have shown that the

qualltagvely'. . . factorization property holds also for other time correlation
Having discussed so far mainly tlherelaxation, we now functions[42]. In Fig. 6 of Ref[42] we plot, forT=2750 K,

turn our attention to theg-relaxation, i.e., the time window :
. . ' ’ the time dependence d&(t) for F¢(q,t) for oxygen atq
in which the correlators are close to the plateau. MCT makeszz_sAfl’ for F(q.t) for Si-Si atq=1.7 A~* and the func-

several interesting predictions about this relaxation regim
and therefore we will check in the following to what extent
they are valid for the present system. The first prediction o
the theory is the so-called “factorization property,” which _ si _
says that close to the plateau every time correlation function a§'(t)= Jr°4wr2G§'(r,t)dr (10
¢a(t) of an observablé is given by 0

@ [
T=4000K [

FIG. 11. Time dependence of the rafR{t), as defined in Eq.
(9), for various correlators(@) F¢(q,t) for silicon and oxygen at
q=1.7,2.2, 2.8, 4.43,5.02, and 5.3T A T=4000 K;(b) the same
set of correlators as ifa) but now atT=2750 K.

the figures as well. Whenever the modulus Sfs(q) is

Sions aSi(t) andaS9(t) that have been proposed by Roux
0 0
]et al.[35] and which are defined as

. and
da(t) = Ppat+haG(1), 8
Sio
Sio, "o 2r ~SiO Sio
a; (t)= A Gy (r,t)—1][Gg3(r,0)—1]dr.

where ¢; is the height of the plateain, is a constant, and o (1 fo TGy~ HIGHr0—1)
the whole time and temperature dependence is given by the (11
function G(t), which does not depend on the observable A

If the factorization property holds one can see immediatelyHere GS'(r,t) and G3'(r,t) are, respectively, the self and

that the ratio distinct parts of the van Hove correlation functidi2d] that
have been calculated and discussed in R@f.The values of
Sah)— dat)) r5 andr3©are 0.4 A and 2.35 A, respectively. Thus we see
A:¥ (99  that the four time correlation functions considered are of
Pa(t")— Pa(t’) very different nature and their overall relaxation behavior is
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1.0 1 : ' ' ‘ : o 2I750K Tt gives us the longest plateau and hence allows us to determine
= -\ g=1.7A" @O0, P the fit parameters with the highest precision. The result of
g 08 ] Py ] these fits are shown in Fig. 12 for the case of the incoherent
L’ 0.6 | N == L function for the oxygen atoms, pangl), and the coherent

E o 7eA 3 function for the O-O correlation, panéb). For each cor-
0.4 a=e o relator (solid lineg two fits are shown: The one in which all
0.2 1 g=4.5A" Ol three terms in Eq(12) were useddotted line$ and the one

= _ WL in which the third term was neglectegdashed lines The

0.0 T R ——— . difference between these two fits are seen at long times

1.0 _17A°  (b) 0-0,2750K | | where the fits with the correction terms are able to describe
=08 ] - Pf the correlator for about one decade more than if these terms
u_‘g R \ g=2.75A" i are not taken into account. That the quality of the fits im-

0.6 1 proves significantly by considering the correction terif®

4 1 was first shown by Sciortinet al. for the case of watdr9].

0. ] g=2.25A"" ' ] We emphasize that for these fits the valud efas kept fixed

0.2 ] X N for all the different correlators, i.e., it was a global fit param-

] N g=a 5AC eter. The value we obtained forwas 0.62-0.02. It can be
0.0 102 107 10° 10" 102 10° - 10° seen from the figure that, if the correction terms are taken

{[ps] into account, the resulting fits are very good and describe the

data over more than three decades. Therefore we conclude

FIG. 12. Time dependence Eg(q,t) for oxygen, pane{a), and that '[hIS pl’edIC'[Ion Of the theory, |e, E@.Z), hO|dS fOI‘ the
F(q.,t) for the oxygen-oxygen correlation, pangl), for various  present system.
wave vectorgsolid lines. The dotted lines are fits the functional A further interesting prediction of MCT is that there ex-
form given by Eq(12). The dashed lines are fits with the functional iSts a one-to-one correspondence between the value of the
form given by Eq.(12) without the last term. von Schweidler exponeftfrom Eq.(12) and the exponeng

of the a-relaxation time in Eq(7) [3,4]. According to the

certainly not the same. In Fig. 6 of R¢#2], however, in the theory one can start with and determine from
B-relaxation regime the four functions fall as nicely onto a
master curve as the incoherent intermediate scattering func- I%(1+b) T?1-a)
tions shown in Fig. 1(). Therefore we find that also for T(1+2b) T(1-2a) (13
these correlators Eq8) holds, which is hence strong evi-

dence that for the present system the factorlzgtlon property Bie value of the parameterand then use the relation
a general property of a very large class of time correlation

functions. 1 1
Having shown now that in thg-relaxation regime the y= 4 — (14)
shape of a time correlation functiaby(t) is independent of 2a  2b

the observablé considered, we continue now to study this

shape in more detail. For this we make use of a further preto calculatey. [HereI'(x) is thel" function] If this is done
diction of MCT, namely, that the time dependencedgf(t)  for our valueb=0.62, one obtaing=2.35. Since we have
at long times is not arbitrary, but given by a sum of powerdetermined the value of, as defined by Eq.7) also directly

laws of the form from the temperature dependence of theelaxation time,
we can compare it now to this theoretical value. This is done
da(t) =S —hat?+h&2+ ... (120 in the inset of Fig. 8 and, as discussed already above, the

theoretical value agrees well with the ones fratfT) for
Here ¢ is the height of the plateau, often also called thefinite values ofg. Thus we conclude that also this highly
nonergodicity parameter, arith (also called critical ampli- nontrivial prediction of the theory is satisfied quite accu-
tude and hff) are constants. According to MCT the value of rately.
the exponenb, also called von Schweidler exponent,ifis In the last part of this section we discuss the wave-vector
dependenbf A, i.e., it is a system-universal quantity. The dependence of the parameters that where obtained from the
first two terms on the right-hand side are the so-called vorits of the correlators in thg regime to the functional form
Schweidler law. Note that Eq12) is an expansion of the given by Eq.(12). For this we have made fits to the two
correlator in terms of®, i.e., it is assumed that the third term incoherent and the three coherent intermediate scattering
is smaller than the second one. However, it has been sudunctions atT=2750 K for a wide range of wave vectors.
gested by the theorj43] that in order to determine reliably The dependence of the nonergodicity parameters is shown in
the coefficienth, it is usually necessary to take into account Fig. 13. For the case of the incoherent functfg(q), we see
this correction as well. In order to check whether the ansatthat theq dependence is Gaussian-like. A fit with the func-
(12) gives a good description of our correlation functions wetional form exp&qzri) gives a very good description of the
have fitted them in the8-relaxation regime with this func- data(see solid lines in panel® and(c)]. For the localiza-
tional form. The temperature we used was 2750 K, since thigon lengthrg, i.e., the size of the cage, we obtain for silicon
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FIG. 14. Wave-vector dependence of the critical amplituftg)
and the first correction terrh®®)(q). (@ Incoherent functions for
silicon and oxygenjb) coherent functions for the silicon-silicon
and the oxygen-oxygen correlations.

FIG. 13. Wave-vector dependence of the nonergodicity param
eters.(a) f$(q) from Fy(q,t) for silicon andf®(q) from F(q,t) for
the silicon-silicon correlationb) f°(q) from F(q,t) for the silicon-
oxygen correlation(c) f$(g) from F¢(q,t) for oxygen andf¢(q)
from F(q,t) for the oxygen-oxygen correlation. The solid lines in
(a) and(b) are a fit with a Gaussian to the incoherent data.

The wave-vector dependencies of the remaining param-
eters are shown in Fig. 14. In pan@ we show the critical
amplitudeh and the first correctiom{® for the two inco-
herent functions. From this figure we recognize that from a
qualitative point of view the curves are very similar to the
and oxygen the values 0.23A and 0.29A, respectively. Thignes calculated within the MCT for a system of hard spheres
has to be compared with the typical nearest-neighbor dis2g]. In particular we find that at small wave vectdi§’
tance between silicon and oxygen, whichlis 1.6 A[7,44.  shows a negative minimum and subsequently a positive
Thus we find that g is around 0.14 and 0.18 for silicon  maximum at significantly largeg. In between it becomes
and oxygen, respectively. This size is somewhat larger thamero atq=1.98 A"* and 1.82 A'* for the case of silicon and
the one found in most solids which, in agreement with theoxygen, respectively. This is close to the first peak in the
Lindemann criterion[45], have usuallyr,~0.1d—0.14d. structure factor, in agreement with the results for the hard
The reason for this difference might lie in the fact that SiO sphere systerf28]. This result shows that from this point of
is a very open network and thus the atoms can vibrate with &iew the theoretical calculation is qualitatively correct. Note
relatively large amplitude without approaching each othetthat the fact thah{”)(q) =0 means that for this wave vector
too much. the von Schweidler law, i.e., the second term in 8@) can

The wave-vector dependence of the nonergodicity paran‘pe seen over the broadest possible time-window, since the
eter for the coherent functions shows oscillations that are ifirst correction to this law is zero.
phase with the corresponding partial structure factor. For the AlSO the g dependence ofi(q) andh(®)(q) for the col-
case of Si-Si and O-O they oscillate around the correspond€ctive quantities, Fig. 1#), is in qualitative agreement with

ing f$ and become basically indistinguishable from them atthe MCT results for a hard sphere systg28]. For example,

large g. These results are in qualitative agreement with theat the location of the first pealt®(q) shows a minimum

. . and its value is negative. Thus we see that the theory is able
ones obtained for other systef9,34,37—39which shows to rationalize the behavior of this function, at least in a quali-

that from this point of view the present open network SyStem[ative way. Of course it would be a more stringent test to do

does not behave .dlffere.ntly asa S|mple'I|qU|q ora pOIymerthe MCT calculation directly for the silica system rather than
As already mentioned in the Introduction, it has recently;y. parq spheres. However, this type of calculation is cur-

been shown that thg dependence of the nonergodicity pa- renty still very demanding and thus has to be left as a future
rametersf°(q) shown here can be calculated also reliablyproject.

with the theorywithout any fit parameterSince the agree-
ment was also good at large wave vectors, and since we see
now that the coherent function oscillates around the incoher-
ent one, we expect that the theory is indeed able to give a In this paper we have presented the results of molecular
reliable estimate of the size of the cage for this networkdynamics computer simulations of a model for silica, the
forming system. archetype of a strong glass former. The goal of this study

IV. SUMMARY AND DISCUSSION
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was twofold: On the one hand, to investigate in detail theTherefore it is not surprising that for the present system the
relaxation dynamics of this system in the temperature regim@ TSP does not hold in thg regime.(Note, that the reason
where this dynamics is slow. On the other hand, we wantethat the TTSP is nevertheless observed in ¢heegime is
to check to what extent the mode-coupling theory of thelikely the fact that the latter regime is much less affected by
glass transition is able to describe this dynamics at low temthe microscopic vibrations than the former since on the time
peratures. In these investigations we mainly focused on thecale of thea-relaxation the vibrations have finally been
time and temperature dependence of the various intermediatemped ouj. However, by calculating the functioR(t)
scattering functions for different wave vectors. We foundfrom Eq.(9) we can show that the time dependence of a wide
that these functions show nicely the slowing down of theclass of correlation functions is the same for times in the
system upon cooling in that they change their shape from @-relaxation regime. In agreement with the theory this de-
single exponential at high temperatures to a two-step relaxpendence is a sum of fractal power laws. We also find that
ation at low temperatures. We emphasize that this two-stethe value of the von Schweidler expondnmin these laws
relaxation is already seen at temperatures that are about 708beys the connection proposed by MCT betwéesnd the
above the melting temperature of the system, which showexponenty of the a-relaxation time, if one uses the as
that in order to show a slow dynamics the system does nadetermined fromr(T) from the intermediate scattering func-
have to be supercooled. tion at finite wave vectors. This result shows that neither

In a previous paper it was demonstrated that this systemor b is a mere fit parameter but instead that they have a
shows a crossover of the dynamics from a flowlike motion atmore fundamental theoretical meaning.
intermediate and high temperatures to a hoppinglike motion By fitting the coherent and incoherent intermediate scat-
at low temperature§7]. The temperature of this crossover tering functions in thes-relaxation regime with the func-
can be identified with the critical temperature of MCT and istional form proposed by MCT we have determined the wave-
around 3330 K. We now find that the time-temperature suvector dependence of the various nonergodicity parameters,
perposition principle holds for temperatures aroundand  the critical amplitudes, and the correction terms. From a
that time correlation functions are stretched. For significantlyqualitative point of view these dependences look very similar
higher and lower temperatures, the TTSP is violated in thato the ones found in simple liquids or simple molecules
the correlators become more exponential-like. This observg29,34,37,38 Since the latter systems are all fragile glass
tion is also in accord with the existence of the above-formers we thus conclude that for these quantities there is no
mentioned crossover from a flowlike dynami@., collec- qualitative difference between fragile and strong glass form-
tive motion that leads to a stretched exponential relaxationers. Furthermore it has to be mentioned that these depen-
to a dynamics in which hopping dominaté<., single par- dences are also in qualitative agreement with the ones pre-
ticle dynamics that leads to an exponential relaxatidhese  dicted by MCTfor the simpler systemshus giving evidence
results are in qualitative agreement with the prediction of thehat the theory is indeed able to describe them correctly.
theory[13]. However, an important difference between fragile and

The temperature dependence of theelaxation times are  strong glass formers is that the typical activation energies
qualitatively similar to the one of the diffusion constant in appearing in the relaxation dynamics at low temperatures are
that also they show a crossover from an Arrhenius law at lowoften connected to the breaking of a covalent bfhd In-
temperatures to a weaker temperature dependence at higlgwed, for SiQ we have recently shown that the energy to
T. In this latter temperature range tfi@lependence of can  break a Si-O bond is equal to the activation energy of the
be fitted well with a power law with the same critical tem- Arrhenius law for the oxygen diffusion constant at low tem-
perature as found in Ref7]. However, the exponeny of  peratures, i.e., 4.7 ey7]. This is in contrast to the case of
this power law that we find for the intermediate scatteringfragile glass formers where it does not seem to be possible to
function is significantly higher than the one for the diffusion relate activation energies to simple elementary events like
constant, in contradiction with the leading order prediction ofthe breaking of a bond.
the theory. Similar to the findings in simple liquids, the rea- In summary, we can say that MCT allows to understand
son for this discrepancy might be the existence of dynamicaiany aspects of the dynamics of this strong glass former.
heterogeneities, i.e., due to the fact that the temperature délote that the glassy dynamics studied in this paper is seen at
pendence of the diffusion constant is weaker than expectedemperatures that are all significantly above the experimental

According to the theory the time-temperature superposiglass transition temperaturg,, which is around 1450 K,
tion principle should hold also in thg-relaxation regime. and even above the melting point of the material, which is
We find that a plot of the correlation functions versus res-around 2000 K. Hence this shows that in order to have a
caled time does not lead to a collapse of the curves onto slow dynamics it is not necessary to be in a supercooled
master function in this time window. The reason for this isstate.
likely the presence of a very pronounced vibrational dynam- Finally we mention that in Ref9] it was shown that the
ics, related to the boson peak, that extends to relatively lowy dependence of the Debye-Waller factor is predicted well
frequency, i.e., influences the dynamics also at relativeljoy MCT. To what extent this is true also for the other ob-
long times. It has been shown before that the presence of servables studied in the present paper is not yet known and it
pronounced microscopic dynamics may disturb theis certainly important to check this in the future. It is of
B-relaxation dynamics predicted by MCT so strongly thatinterest that we find that some of the predictions of the
the asymptotic results cannot be observed anynj@B.  theory, such as the factorization property, hold also below
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T., i.e., in a temperature regime where the hopping prostrong glass former that does not show such a pronounced
cesses are important. For the present system we find, howibrational dynamics.

ever, that in theB-relaxation regime the time-temperature
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